Original

Genome-Wide Screening of Laser Capture Microdissected Gastric Signet-Ring Cell Carcinomas

Yuji Kurihara1, Mohammad Ghazizadeh1, Hideki Bo2, Hajime Shimizu1, Oichi Kawanami1, Yukichi Moriyama2 and Masahiko Onda3

1Department of Molecular Pathology, Institute of Gerontology, Nippon Medical School
2Center for Digestive Diseases, Second Hospital, Nippon Medical School
3First Department of Surgery, Nippon Medical School

Abstract

Gastric signet-ring cell carcinoma comprises a distinct category of gastric cancers and has been reported to have poor prognosis. In an attempt to define genetic changes involved in the pathogenesis of this lesion in an in vivo state, we isolated signet-ring cell carcinoma cells from freshly fixed smears of tumor tissues of 7 primary gastric signet-ring cell carcinomas by laser capture microdissection and applied comparative genomic hybridization (CGH) to screen for DNA sequence copy number changes. Frequent chromosomal gains were detected on 2q, 5p, 7q, 14q and 20q, each in 6/7 cases, on 9q, 12q, 17q, and 19q, each in 5/7 cases, and on 18p in 4/7 cases. Frequent losses were observed on 6p and 17p, each in 5/7 cases, on 6q, and 21p, each in 4/7 cases, and on 3p, 8p and 8q, each in 3/7 cases. Losses on 6p have rarely been observed in conventional types of gastric carcinomas reported in the literature. These data provide the first evidence for the occurrence of specific genomic aberrations in gastric signet-ring cell carcinomas. Our observation of frequent losses on 6p chromosomal arm may provide novel abnormalities of potential significance in gastric signet-ring cell carcinomas, suggesting the involvement of genes residing in this region in the genesis of the disease.

Key words: comparative genomic hybridization, laser capture microdissection, gastric adenocarcinoma, signet-ring cell, DNA copy number, genetic changes, chromosome

Introduction

Gastric adenocarcinoma accounts for nearly one-tenth of all malignancies and is the second most frequent cause of cancer mortality worldwide1. Primary gastric adenocarcinoma with signet-ring cell histology comprises 3 to 39% of gastric carcinomas2. The diagnosis of signet-ring cell carcinoma is usually considered if an adenocarcinoma contains a predominant component (>50%) of tumor cells with signet-ring cell morphology. In Japan, gastric signet-ring cell carcinoma has a lower incidence (3.4%) than in Western countries2.

The genetic events underlying the neoplastic process in gastric adenocarcinomas remain largely unknown. Efforts to understand this complex mechanism have led to a number of molecular and cytogenetic studies. Frequent allelic losses on chromosomes 1q, 5q, 7q, 12q, 17q, 18q, and 21q have been detected

Correspondence to M. Ghazizadeh, MD, Department of Molecular Pathology, Institute of Gerontology, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan
E-mail: cien@nms.ac.jp
Journal Website (http://www.nms.ac.jp/jnms/)
in gastric adenocarcinomas42. In addition, homozygous deletions of 3p were shown in several gastric cancer cell lines6. In a study by Hollstein et al6, inactivation of p53 tumor suppressor gene on chromosome 17p was demonstrated in the majority of gastric cancers. In contrast to the losses of genetic materials on chromosomal arms, amplifications of several chromosomal regions have also been reported. Amplification of 7q 31–32 region that harbors MET oncogene, encoding the hepatocyte growth factor receptor44, and amplification of 17q 11-21 region that harbors ERBB2 oncogene, encoding a growth factor receptor-like protein with high homology to the epidermal growth factor receptor45, have been demonstrated in gastric cancers.

Comparative genomic hybridization (CGH) analyses of gastric adenocarcinomas, excluding those of cell lines, have so far been performed using DNA extracted from whole frozen or paraffin-embedded tumor tissues or tissue sections which contain various types of cells including vascular, lymphatic, and stromal cells, and thus heterogenous in nature. Consequently, genetic alterations obtained from these samples might be underrepresented or overrepresented. With the advent of laser capture microdissection (LCM) technology46, pure population of specific cells under morphologic confirmation can be isolated from tissue sections or tumor cell smears on glass slides47.

In this study, in an attempt to define genetic changes involved in the pathogenesis of gastric signet ring cell carcinoma in an in vivo state, we isolated pure carcinoma cells from freshly fixed tumor cell smears of primary gastric signet-ring cell carcinomas by laser capture microdissection and applied CGH to screen for DNA sequence copy number changes.

Materials and Methods

Specimens

Tumor tissue and blood samples were obtained from 7 consecutive gastric signet-ring cell carcinoma patients. Informed consents from the patients were obtained by the Center for Digestive Diseases, Second Hospital, Nippon Medical School before the study was done. We used an epithelial aggregate separation and isolation method for preparation of tumor cell smears48. Immediately after surgery, the surface of the sectioned tumor was gently scraped with the edge of a plain, uncharged, RNase-free microscopic glass slide. The materials obtained were spread evenly onto the surface of a second uncharged slide and immediately fixed in 95% ethanol for approximately 2 min. Multiple slides (20 to 30) were prepared and stored at -20°C until use. Routine hematoxylin-eosin stained sections from the original tumor specimens were reviewed to confirm the histopathologic type and diagnosis. Signet-ring cell carcinoma cells could be detected easily because of their typical enriched intracytoplasmic mucin and peripheral compressed nuclei.

Patients

Clinicopathological characteristics of the patients are summarized in Table 1. There were 4 females and 3 males. The mean age of the patients was 54.7 years (range, 31–73 years). Pathologic diagnosis and classification of the tumors were based on the Japanese Classification of Gastric Cancer49. The diagnosis of signet-ring cell carcinoma was considered if an adenocarcinoma contained a predominant

Table 1 Clinicopathological characteristics of the gastric signet-ring cell carcinomas

<table>
<thead>
<tr>
<th>Patient</th>
<th>Sex</th>
<th>Age</th>
<th>Size</th>
<th>Site*</th>
<th>Depth†</th>
<th>TNM stage ‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>73</td>
<td>80 × 60mm</td>
<td>F</td>
<td>ss</td>
<td>T2N2M0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>63</td>
<td>18 × 22mm</td>
<td>M</td>
<td>m</td>
<td>T1N0M0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>31</td>
<td>6 × 6mm</td>
<td>M</td>
<td>m</td>
<td>T1N0M0</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>65</td>
<td>4 × 4mm</td>
<td>M</td>
<td>mp</td>
<td>T2N0M0</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>54</td>
<td>90 × 55mm</td>
<td>M</td>
<td>m</td>
<td>T1N0M0</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>50</td>
<td>13 × 11mm</td>
<td>M</td>
<td>ss</td>
<td>T2N2M0</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>47</td>
<td>13 × 14mm</td>
<td>M</td>
<td>m</td>
<td>T1N0M0</td>
</tr>
</tbody>
</table>

* F, fundus; M, mid-body. † ss, subserosa; m, mucosa; mp, muscularis propria. ‡ T1N0M0 = Ia, T2N0M0 = Ib, T2N2M0 = IIIa.
component (>50%) of tumor cells with signet-ring cell morphology. The clinical stages of the tumors were distributed as stage Ia, 4 cases; stage Ib, 2 cases; and stage IIIa, 1 case.

Laser Capture Microdissection

LCM was done using the PixCell LM 100 system (Arcturus Engineering, Mountain View, CA). The tumor smears were stained using a rapid cytological staining method without the use of coverslips according to the standard LCM method available at the NIH LCM web page (http://dir.nichd.nih.gov/1 cm/lcm.htm). By LCM, between 800 to 1500 signet-ring cell carcinoma cells could be microdissected from one slide.

Comparative Genomic Hybridization

Extraction of DNA from microdissected tumor cells was performed using QIAamp DNA Mini Kit (QIAGEN, GmbH, Germany) according to standard protocols, and concentration, purity, and molecular weight of the DNA were examined. CGH was performed essentially as described previously. Briefly, genomic tumor cell DNA was labeled with fluorescein isothiocyanate-deoxyuridine triphosphate (FITC-dUTP) and normal reference DNA with Texas Red isothiocyanate (Texas Red-dUTP) using a standard nick translation reaction. Equal amounts of labeled tumor DNA and labeled normal reference DNA (200 ng) and 10 μg of Cot-1 blocking DNA were mixed, co-precipitated, and resuspended in 10 μl of hybridization mixture (50% formamide, 0.1% Tween-20, and 10% dextran sulfate in 2× standard saline citrate at pH 7.0). The probe mixture was denatured and hybridized to normal metaphase preparations.

After 72 h incubation, the slides were washed and mounted in anti-fade solution containing 4’, 6-diamidino-2-phenylindole (DAPI) as a counterstain. Normal male and female DNAs hybridized to normal metaphase preparations served as a negative control, and as a positive control, a previously characterized ovarian cancer cell line (A2780) was used.

For each tumor, at least 8 to 10 metaphases were analyzed including only metaphase spreads with high-intensity hybridization and low granularity. Image capturing and quantitative analysis of the ratio of green-to-red fluorescence intensities, representing tumor to normal DNA copy number along each chromosome were done using Leica digital image analysis system (Q-FISH/Q-CGH software package; Leica Microsystems Imaging Solutions Ltd, Cambridge, UK). A chromosomal region was considered to have increased DNA copy number if the average green-to-red fluorescence ratio exceeded the 1.15 threshold (a gain), amplified copy number if the ratio exceeded the 1.5 threshold, and decreased copy number if the ratio was below the 0.85 threshold (a loss). These threshold levels have been based on the average green-to-red fluorescence ratio levels and 95% confidence intervals derived from control experiments using normal-normal (microdissected normal lymphocytes) co-hybridizations. Telomeric and pericentromeric regions were excluded from the analysis. In addition, chromosomes 1p, 16p, 17p, 19, 22, were meticulously analyzed because these regions had been previously found to be prone to false-positive CGH results. In each case, the averaged data from 3 repeated experiments was used for the analysis.
Fig. 2 Summary of the CGH data on the 7 signet-ring cell carcinomas. Gains of the DNA copy number are shown to the right of the chromosome ideograms, and losses are shown to the left. Each line represents a genetic aberration seen in one tumor.

Results

Fig. 1 illustrates an example of epithelial aggregate preparation and subsequent LCM of a signet-ring cell carcinoma lesion. Gastric signet-ring cell carcinoma cells could be microdissected after a rapid cytological staining. A summary of the CGH data on the 7 signet-ring cell carcinomas is depicted in Fig. 2 Subsequently, Table 2 shows the DNA copy number alterations. Common chromosomal gains were detected on 20q, 7q, 2q, 5p, 14q, each in 6/7 cases, 9q, 17q, 12q, 19q, each in 5/7 cases, and 18p in 4/7 cases. Frequent losses were observed on 6p, 17p, each in 5/7 cases, 6q, 21p, each in 4/7 cases, and 3p, 8p, and 8q, each in 3/7 cases. Minimal overlapping regions for gain were assigned to 2q37, 5p13, 7q11.2, 9q12–21, 12q12, 14q24, 17q21, 18p11, 19q13 and 20q11.2, whereas minimal overlapping regions for loss were assigned to 3p21–26, 6p12, 6q25–26, 8p21–23, 8q24.2, 17p13, and 21p13. The common regions of chromosome 7 gain were 7q11.2 (5/7 cases) and 7q35–36 (4/7 cases).

Discussion

In the present CGH study, microdissected primary gastric signet-ring cell carcinoma cells were screened for DNA sequence copy number changes in an in vivo state. Since signet-ring cell carcinoma is attributed to adenocarcinomas containing a predominant component with signet-ring cell morphology. LCM
Table 2 DNA copy number changes in gastric signet-ring cell carcinomas

<table>
<thead>
<tr>
<th>Patient</th>
<th>Copy number changes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loss: 3p21-26, 3q11-12.2, 4p14-16, 4q21-35, 6p23, 6q24-27, 8p21-23, 8q11.2, 13q14-34, 16q23, 17p12-25, 20q13, 21q22</td>
</tr>
<tr>
<td></td>
<td>Loss: 2q12-34, 4p15, 4q32, 6p12-25, 7q12-15, 7q21-34, 8q22, 8q24, 10p14, 10q21-26, 14q11-23, 16q22, 17p13, 19q13, 21q12-22</td>
</tr>
<tr>
<td>3</td>
<td>Gain: 1p21-34.3, 1q22, 2p16, 3p12, 4p13, 4q21, 5p13, 5q11-23, 6q14-22, 7q11.2-22, 8q24, 10p12, 10q11-22, 11q22, 14q21-31, 16p11.2, 17q24-25, 18q22, 19p13.1-13, Xp22.2, Xq13-28</td>
</tr>
<tr>
<td></td>
<td>Loss: 2p11.2, 2p22-23, 3p13, 6p12-25, 6q26, 9q21-34, 11q13-24</td>
</tr>
<tr>
<td>4</td>
<td>Gain: 1p36.2-31, 1q33, 2p12-25, 2q12-37, 4p16, 5p11, 6p12, 7p11-12.3, 7q36, 8q11.2, 9q12-34, 10p11, 11p12, 12q12-13.4, 14q11-32, 15q13, 17p12-13, 18p11.1-12, 18q21, 19q12, 20p13, 20q11.2-13, 21p13, X</td>
</tr>
<tr>
<td></td>
<td>Loss: 3p12-26, 3q13.3-29, 4q34, 5q15-23, 6q12.2, 7p21, 7q21, 8q13-23, 10p14, 13p13, 13q11-33, 15q24, 21p12</td>
</tr>
<tr>
<td>5</td>
<td>Gain: 2p22-25, 2q22-37, 2p12-26, 4q21-34, 6q11, 7q12-36, 8q12-24, 9p12, 12q12.12, 13q34, 14p11.2, 14q21, 15q21, 16p22-24, 17p13, 17q21-25, 18q21, 19q13.4, 20q11.1-13.3, 21p11.1-q22, Xp11.4</td>
</tr>
<tr>
<td></td>
<td>Loss: 1p36.3, 1q22-44, 4p15.3, 17p15, 21p13</td>
</tr>
<tr>
<td>6</td>
<td>Gain: 1p11-31, 1q21-25, 1q32-43, 2q11-37, 3p21, 3q12-13.3, 4p12, 4q25, 5p13, 6q12-27, 7q25, 8q11, 9p12-24, 9q12-34, 10p23, 11q22-25, 12q12-22, 13p13-q34, 14p13, 14q32, 15q22, 16q11.2-12.1, 17p11.2, 18p11.2, 19q13, 20p-q11.2</td>
</tr>
<tr>
<td>7</td>
<td>Gain: 2p12-25, 2q12, 2q33-37, 3p12, 4p15, 4q12-18, 5p13, 5q11-12.3, 6p22, 6q14, 7q11.2-31, 8q12, 9q21-34, 11p14, 12q12.1, 13q21, 17q11.2-31, 19q13.1-34, 20q11.2, 21q11.1, 21q22</td>
</tr>
<tr>
<td></td>
<td>Loss: 3p21, 6p12, 6q25, 14q21-32, 15p12, 17p13, 21p13, 22q13</td>
</tr>
</tbody>
</table>

provided a highly effective approach for obtaining a pure cell population. We could identify a variety of chromosomal aberrations in gastric signet-ring cell carcinomas. Frequent chromosomal gain (≥40% of cases) was detected, in order of frequency, on 20q, 7q, 2q, 5p, 14q, 9q, 17q, 12q, 19q, and 18p, and frequent loss (≥40% of cases) was observed, in the same order, on 6p, 17p, 6q, 21p, 3p, 8q, and 8q.

Several studies have reported changes in DNA copy number in gastric carcinomas. However, these studies were not specifically directed at the detection of genetic aberrations in signet-ring cell subtype of gastric carcinoma per se. This distinct category of gastric adenocarcinoma has some specific morphologic and clinical features.

CGH studies of cell lines and tumor tissues each carry some inherent problems. As a result of long-term culture, cell lines often undergo genomic alterations such as amplifications or develop subclones with different genetic profiles. On the other hand, whole tumor tissue contains unwanted interfering cells. These factors may influence the CGH results. With the advent of laser capture microdissection, it is now feasible to isolate specific cell types of interest from tissue sections or cell smears under direct morphological confirmation. We applied this method to obtain pure signet-ring cell carcinoma cells for our analyses. In general approximately 800 to 1,500 signet-ring cell carcinoma cells could be obtained from one preparation. As in our study, DNA copy number gains at 17q and 20q have been detected in previous CGH studies of gastric carcinomas of various histologic types including intestinal, diffuse, or mixed types. On the other hand, the losses of chromosomal DNA copy number observed in our study is consistent with previous studies of gastric adenocarcinomas, and suggests the presence of candidate tumor suppressor genes involved in gastric
signet-ring cell carcinogenesis on chromosomes 2q, 3p, 6p, 6q, 8p, 8q, 17p, and 21p. Deletions on 3p have been reported in a variety of malignancies including renal, breast, and gastric cancers\(^{22-27}\). In gastric cancers, 46% loss at 3p14 was found\(^{27}\). The FHIT gene is known to reside at 3p14 and its loss of expression has been observed in a majority of gastric carcinomas\(^{28}\).

We found some losses at 3p26. As a representative gene, the Von Hippel Landau gene is an established tumor suppressor gene at 3p25–26. Chromosome 8p arm has been suggested to harbor genes suppressing tumor progression or metastasis, and has shown significant loss of heterozygosity in different cancers including gastric adenocarcinoma\(^{29,30}\). In addition, in a detailed analysis of allelic loss at 8p21–22 performed on gastric cancers, 44% of tumors showed allelic loss for at least one marker at 8p21–22\(^\text{a}\), indicating that 8p22 deletion is a frequent event in gastric cancer. Loss of 8p21, 8p22, and 8p23 observed in our study is in accord with these findings.

Frequent loss of DNA copy number at a chromosomal region has been interpreted as evidence that the region might harbor a tumor suppressor gene that has been inactivated during malignant transformation\(^{31}\). Some of the losses of DNA copy number observed in our series 2q, 3p, 6p, 8p, 8q, 17p and 21p corresponded to the results of previous CGH, LOH, and cytogenetic studies of gastric cancers\(^{32}\) and others such as loss of 6p provided new abnormalities of potential relevance to gastric signet-ring cell carcinomas. We performed a review of the existing literatures on CGH analysis of gastric carcinomas and found that loss of 6p was rarely observed in these tumors (Table 3). In fact, in the only study in which loss of 6p was detected, nearly half of the cases were more or less associated with the signet-ring cell carcinoma component\(^{33}\). In addition the loss of 6p was predominantly observed in the undifferentiated tumor type. Chromosomal arm 6p contains several genes with known function such as endothelin-1, interleukin-17F, and the tumor necrosis factor receptor superfamily, member 21. Allelic deletions on the 6p are one of the common, possibly early, genetic changes that occur in the pathogenesis of cervical carcinoma\(^\text{a}\). Recent studies in cervical carcinoma have also indicated the presence of at least two putative tumor suppressor genes on 6p\(^{34}\).

Deletion at 6q is known as a relatively frequent cytogenetic aberration in gastric cancers. However, no significant loss of heterozygosity on 6p in gastric cancers has so far been found; thus our finding of frequent losses on 6p chromosomal arm appears novel for gastric signet-ring cell carcinoma. Subsequently, this region may harbor genes involved in the multistep process of signet-ring cell carcinogenesis.

In conclusion, the results of our CGH analysis in gastric signet-ring cell carcinoma suggest that inactivation of putative genes located on 6p chromosomal arm may be an important event in the development of this tumor type.

Acknowledgements:

The authors appreciate Ritsuko Arai, PhD (formerly post-doc at our department), for technical assistance.
and helpful discussions.

This study was supported in part by grants-in-aid (Nos. 13671886 and 13671332) for scientific research from the Ministry of Education, Culture, and sports, Science and Technology of Japan.

References

(Received, December 21, 2002)

(Accepted, December 28, 2002)