Is Transvaginal Ultrasonography at Mid-trimester Useful for Predicting Early Spontaneous Preterm Birth?

Takehiko Fukami¹, Kaisuke Ishihara¹, Takao Sekiya² and Tsutomu Araki¹

¹Department of Obstetrics and Gynecology, Nippon Medical School
²Department of Obstetrics and Gynecology, Fujita Health University Banbuntane Houtokukai Hospital, Aichi

Abstract

Numerous reports have examined the relationship between sonographically determined cervical length and spontaneous preterm birth. Moreover, large screening studies have consistently demonstrated that the shorter the cervical length, the higher the rate of spontaneous preterm delivery. However, the sensitivity and positive predictive value of the cervical length for detecting preterm birth were low. Subsequently, we developed a new sonographic parameter termed “cervical gland area (CGA)”. The purpose of this study was to determine whether sonographic cervical findings (shortened cervical length or absence of CGA) at 16~19 weeks’ gestation could predict spontaneous preterm birth. The absence of CGA as compared to the shortened cervical length showed a higher sensitivity (75.0% vs. 50.0%) and a significantly elevated positive predictive value (54.5% vs. 8.3%) for preterm birth before 32 weeks’ gestation. It was concluded that the absence of CGA was a novel and useful sonographic parameter for predicting early spontaneous preterm birth. (J Nippon Med Sch 2003; 70: 135~140)

Key words: cervical gland area, cervical length, preterm birth, transvaginal ultrasonography, cervical ripening

Introduction

Most preterm births (90~95%) are after 32 weeks’ gestation. The neonatal outcomes are generally good. However, since the development of neonatal intensive units, most neonatal deaths associated with prematurity occur in infants born at less than 32 weeks’ gestation and significant morbidities abate after 32 weeks’ gestation¹⁴. Therefore, it is highly important for obstetricians to prevent spontaneous preterm birth before 32 weeks’ gestation. A logical strategy for the prevention of spontaneous preterm labor begins with the identification of patients at risk, and instituting medical intervention as soon as possible.

There have been numerous studies that have examined the relationship between cervical sonography and the outcome of singleton gestations⁵~¹⁷. It is assumed that vaginal sonographic evaluation of the uterine cervix is useful for predicting pregnancy outcome. In addition, examination in early pregnancy becomes necessary to predict early preterm birth. In these studies the main sonographic cervical parameter used to predict the pregnancy outcome was the cervical length. The
sensitivity and positive predictive value of cervical length for detecting preterm birth are relatively good in high-risk patients, but are poor in the general population. In order to overcome such problems, we developed a new sonographic parameter, termed “cervical gland area (CGA)” \[^{10,13}\]. The present prospective study was performed to compare shortened cervical length and absence of CGA assessed at early mid-trimester for their ability to predict spontaneous preterm birth before 32 weeks’ gestation.

Materials and Methods

This prospective study was performed on patients who underwent ultrasonographic examination at the Department of Obstetrics and Gynecology, Nippon Medical School Second Hospital between April 1998 and September 2001. The study population consisted of patients scanned between 16 weeks’ and 19 weeks’ gestation. Women with singleton pregnancies were eligible to participate, and those with chronic medical or obstetric problems that might result in an indicated preterm birth, or uterine and fetal anomalies were ineligible. Women who received a cerclage because of a clinical history of cervical incompetence were also excluded. Informed consent was obtained before performing transvaginal sonography. Gestational age was determined from the comparing last menstrual period and sonographic evaluation.

Vaginal sonography was performed using MOCHIDA SONOVISTA EX and ET (7.5–MHz TV probe) models at an angle of 22° (MOCHIDA Co, Tokyo Japan) which were operated at a constant output power of −0 dB and a total gain control of 35 to −40 dB to avoid false positive or negative detection. Sonographic examinations were performed by 6 house staff doctors who were well-trained specialists. Each sonographic examination was performed according to a defined protocol: the patient was asked to empty her bladder and then was placed in a dorsal lithotomy position. The transvaginal probe was inserted and advanced along the vaginal canal until the sagittal image of the cervix could be visualized. The probe was withdrawn slowly and stopped when an adequate image was obtained. An adequate image was defined as the visualization of the internal os, external os, and endocervical canal. Cervical length was measured with electric calipers as the linear distance between the external os and the internal os along a closed endocervical canal. A shortened cervix was defined as ≤30 mm in length. This cut-off value had been shown to be less than the mean cervical length minus 1.6 SD between 16 weeks’ and 19 weeks’ gestation. CGA was defined as the sonographically hyperechoic or hypoechoic zone surrounding the cervical canal, which is assumed to correspond to the histological CGA. If the cervix appeared sonographically isoechoic, we defined it as
absence of CGA (Fig. 1).

The primary outcome criterion for this study was a spontaneous preterm birth. Multivariate analyses were performed to examine the relationship between ultrasonographic variables and the likelihood of preterm delivery. Preterm birth was categorized according to the gestational age at delivery (group A: 22~31 weeks’ gestation and group B: 32~36 weeks’ gestation). The sensitivity, specificity, positive and negative predictive values were calculated for cervical length of ≤30 mm and absence of CGA.

Results

A total of 3,367 women met the inclusion criteria and underwent cervical assessment at 16~19 weeks’ gestation as a screening test for preterm delivery. Of the 3,367 pregnancies, 312 were lost to follow-up, 25 had iatrogenic preterm delivery and these pregnancies were excluded from further analysis. In the remaining 3,030, the mean (±SD) cervical length was 41.8±7.2 mm, nulliparous were 1,573 (51.9%) and multiparous were 1,457 (48.1%). The mean (± SD) maternal age was 29.5±4.9 years (range 17~43 years). The overall rate of preterm delivery (22~36 weeks’ gestation) was 3.2% (96/3,030) and that of group A (22~31 weeks’ gestation) was 0.3% (8/3,030) and group B (32~36 weeks’ gestation) was 2.9%. Most (91.7%: 88/96) preterm births were after 32 weeks’ gestation (group B) (Table 1).

Tables 2 and 3 show the efficacy of sonographic cervical parameters for predicting the two stages (group A, B) of preterm birth. In group A, shortened cervical length, absence of CGA, or the combined two parameters respectively had a sensitivity of 50.0%, 75.0% or 50.0%, a positive predictive value of 8.3%, 54.5% or 40.0%, a specificity of 98.5%, 99.8% or 99.8%, and a negative predictive value of 99.9% for each. In group B, shortened cervical length, absence of CGA, or the combined two parameters respectively had a sensitivity of 18.2%, 23% or 23%, a positive predictive value of 33.3%, 18% or 20.0%, a specificity of 98.9%, 99.7% or 99.7%, and a negative predictive value of 97.6%, 97.2% and 97.2%. The absence of CGA showed a significantly higher
positive predictive value for preterm birth before 32 weeks’ gestation (54.5% vs. 8.3%).

Discussion

A large number of studies have evaluated the relationship between cervical sonography and the likelihood of spontaneous preterm birth of singleton gestations. In several reports, the patient populations were symptomatic women and the criterion for preterm birth analysis was after 32 weeks’ gestation. In these studies, most preterm births were after 32 weeks’ gestation. In fact, our study led to the same result. Thus, in several reports the likelihood of spontaneous preterm birth was more dependent on populations after 32 weeks’ gestation. To date in spite of the development of neonatal intensive units, preterm birth has been the most important cause of infant morbidity and mortality, especially at less than 32 weeks’ gestation, because this group of neonates is at particular risk for short- and long-term morbidity and mortality. Therefore, the critical point of predicting preterm birth is considered to be at 32 weeks’ gestation and the prediction of delivery before 32 weeks to be more clinically relevant than the traditional 37 week end point.

Sonographic measurement of cervical length provides a useful prediction of the risk of spontaneous preterm birth. Another sonographic finding in pregnancies at risk of preterm delivery is funneling or dilatation of the internal os and several investigators have suggested that funneling is an early sign of cervical incompetence. However Owen et al. indicated that funneling at the internal os had a wide range of biological variability, which might limit the reproducibility of this finding and that the measurement of cervical length should be reproducible and clinically useful. Hassan et al., described that the difficulty in obtaining a reproducible mean had forced most investigators to use cervical length as a screening method. On the other hand, CGA has been reported as a new sonographic cervical finding. The absence of CGA reflects cervical maturation and could be considered as a predictor of spontaneous preterm birth in patients symptomatic for preterm labor.

We performed this prospective study in a general population to compare shortened cervical length and absence of CGA assessed at 16–19 weeks’ gestation for their ability to predict spontaneous preterm birth before 32 weeks’ gestation. Our findings support previous reports that cervical length is a useful predictor of preterm birth. Absence of CGA had a higher sensitivity and positive predictive value than shortened cervical length. Among those in whom CGA was not detected at 16–19 weeks’ gestation, 54.5% delivered before 32 weeks’ gestation. On the other hand the sensitivity of shortened cervical length in predicting preterm birth before 32 weeks’ gestation was relatively good (50%), but its positive predictive value was very low (8%). This is consistent with the findings of Heath et al. In predicting preterm birth after 32 weeks’ gestation, the sensitivity and the positive predictive value of each parameter was low. All parameters had high specificity and negative predictive value. Therefore, women with detectable CGA or with normal cervical length (>30 mm) should be successful in avoiding
preterm birth. Overall, our findings strongly suggested that as a screening test of predicting preterm birth before 32 weeks’ gestation, the absence of CGA was a better predictor than shortened cervical length, at least in a general population of singleton gestations. However, it is necessary to address why the absence of CGA is the most appropriate sonographic cervical parameter for the prediction of prematurity.

The human uterine cervix is composed of smooth muscle, collagen, and connective tissue or ground substance. Cervical collagen appears to be the major structural component maintaining the integrity of the cervix prior to parturition. During gestation, the cervix maintains a firm consistency, forming a long, tight sphincter to ensure the integrity of the pregnancy. But near the end of the term, the cervix normally undergoes a process called “ripening” or “maturation”, which causes it to become softer, shorter, more pliable and ultimately dilated to allow the passage of the fetus. The cervical ripening process is believed to be the result of biochemical changes that cause a breakdown of the collagen and a change in the glycosaminoglycans and water content of the matrix. Ripening that occurs too early in gestation often leads to preterm birth. Therefore, a logical strategy for the prediction of spontaneous preterm birth begins with identification of early cervical ripening. Then, when a cervical ripening advances, why does CGA disappear?

Cervical mucosa is lined with tall columnar epithelium and contains many large, highly branched glands. This mucosa penetrates into the stroma, where it gives rise to glands lined by columnar cells. According to Flumann and Dickmann, these glands, which actually represent infoldings of endocervical mucosa, will present new and more pronounced invaginations in the course of pregnancy. He defined this formation as “tunnel clusters”. Our definition was that CGA is the sonographical contrast between tunnel clusters of cervical mucosa and the cervical stroma. Subsequently, we regarded the absence of CGA as the disappearance of this contrast sonographically due to an increase in water content and biochemical changes in connective tissue and breakdown of tunnel clusters by effacement of the cervix.

In conclusion, the absence of CGA at second-trimester ultrasonography appeared to be a new and powerful predictor of spontaneous preterm birth before 32 weeks’ gestation. Especially predicting early preterm birth contributes to a decrease in early spontaneous preterm delivery, therefore the development of this parameter should be considered to have highly clinical significance.

Acknowledgements: We thank Dr. M. Ghazizadeh, Associate Professor, Department of Molecular Pathology, Institute of Gerontology, Nippon Medical School, for his careful review and revision of our manuscript.

References

(Received, October 18, 2002) (Accepted, November 7, 2002)