Neuroprotective Effect of an Antioxidant in Ischemic Stroke:
Involvement of Neuronal Death Signaling
and Blood-brain Barrier Disruption
Chikako Nito and Yasuo Katayama

Divisions of Neurology, Nephrology, and Rheumatology, Nippon Medical School

Cerebral ischemia is a major cause of death and disability worldwide, and treatments for it are limited. A new therapeutic strategy of brain protection after acute stroke targets the neurovascular unit, such as endothelial cells, astrocytes, microglia, and neurons, instead of neurons only (Fig. 1).

Edaravone, a novel free radical scavenger, has been used to treat acute ischemic stroke in Japan. We have previously reported the antiedema effect of the combination therapy of edaravone and mild hypothermia at 35°C following transient focal cerebral ischemia (tFCl). However, the mechanism of the effect remains unclear. In the present study, we tested the hypothesis that this combination therapy can reduce oxidative stress and the activation of matrix metalloproteinase-9 (MMP-9), which is related to blood-brain barrier (BBB) dysfunction, and brain edema formation after tFCl.

![Diagram](image)

Fig. 1 Vascular unit damage by oxygen radicals after cerebral ischemia and reperfusion

Journal Website (http://www.nms.ac.jp/jnms/)

J Nippon Med Sch 2011; 78 (1)
Sprague-Dawley rats were subjected to middle cerebral artery (MCA) occlusion for 2 hours by using an intraluminal suture technique. The rats were randomly divided into 4 groups: 1) vehicle + normothermia (control); 2) vehicle + mild hypothermia; 3) edaravone + normothermia; and 4) edaravone + mild hypothermia. Temporal muscle and rectal temperatures were maintained during ischemia at 37°C ± 0.2°C in the normothermic groups or at 35°C ± 0.2°C in the hypothermic groups by means of a thermal regulatory system. After reperfusion, the rats were decapitated. The hemisphere of the affected side was removed at 24 hours and 3 days. **Figure 2** shows the procedures for this experiment. The activity of MMP-9 and MMP-2 was assessed with gelatin zymography, and BBB permeability was investigated by Evans blue method. The size of the cerebral infarction or edema was evaluated with 2,3,5-triphenyltetrazolium chloride staining.

There were no statistically significant differences in the mean arterial blood pressure, pH, PaCO₂, PaO₂, or blood glucose levels among the experimental groups. The combined treatment with edaravone and mild hypothermia significantly reduced Evans blue leakage (**Fig. 3A**) and MMP-9 activity 24 hours after reperfusion.
(Fig. 3B) and decreased edema and infarct volume 3 days after reperfusion (Fig. 4). The MMP-2 level was not significantly different between these 4 groups (Fig. 3B). Treatment with edaravone alone or hypothermia alone reduced edema volume but not infarct volume. We also found that the oxidized hydroethidine signals were decreased to a greater extent in the combined therapy group than in the control group.

These results demonstrate that edaravone combined with mild hypothermia reduces BBB disruption by blocking MMP-9 activity and attenuates edema formation and infarction by suppressing free radical production following tFCl in rats. We suggest that this combination therapy has a potent neurovascular protective effect after acute ischemic stroke.

References